Что собой представляют электронные аналоговые приборы

Что собой представляют электронные аналоговые приборы

Электронные аналоговые приборы это приборы, в которых преобразование сигналов осуществляется с помощью аналоговых электронных устройств. Выходной сигнал таких средств является непрерывной функцией измеряемой величины. Электронные приборы применяют при измерении практически всех электрических величин: напряжения, тока, частоты, мощности, сопротивления и т.д. Благодаря применению электронных усилителей удается расширить функциональные возможности средств измерений и обеспечить высокий уровень их характеристик: это, в первую очередь, относится к высокой чувствительности приборов, широкому диапазону измерений, малой мощности потребляемой от измеряемой цепи и т.д.

В настоящее время широкое признание получили такие приборы, как электронно-лучевые осциллографы, электронные вольтметры, омметры, анализаторы спектра и другие. Рассмотрим кратко некоторые из них.

1. Электронные вольтметры.

В электронных вольтметрах измеряемое напряжение преоб­разуется с помощью аналоговых электронных устройств в пос­тоянный ток, который подается на магнитоэлектрический из­мерительный механизм со шкалой, градуированной в единицах напряжения. Электронные вольтметры обладают высокой чувст­вительностью, широким диапазоном измерения напряжении (от десятков нановольт на постоянном токе до десятков киловольт) и большим входным сопротивлением (более 1 МОм), измеряют сигналы до частот порядка сотен, мегагерц.

Упрощенная структурная схема вольтметров постоянного тока показана на рисунке 11.

где ВД – входной делитель напряжения, УПГ – усилитель переменного или постоянного тока, УМ – магнитоэлектрический прибор.

Последовательное соединение делителя напряжения и уси­лителя является характерной особенностью всех электронных вольтметров. Такая структура позволяет делать вольтметры высокочувствительными и многопредельными.

Селективные вольтметры предназначены для измерения действующего значения отдельных гармонических составляющих измеряемого сигнала.

Принцип действия селективного вольтметра заключается в выделении отдельных гармонических составляющих сигнала или сигнала узкой полосы с помощью перестраиваемого полосового фильтра и измерений действующего значения выделенных сигналов.

2. Приборы для измерения частоты и фазы.

В электронных аналоговых частотомерах применяются два способа измерения частоты. Первый, используемый в области звуковых частот, основан на формировании импульсов, имеющих постоянную площадь, ограниченную кривой импульса тока и времени на диафрагме. Частота этих импульсов должна быть равна частоте измеряемого сигнала.

В основе второго, резонансного, способа измерения лежит сравнение частоты колебаний исследуемого источника с собственной частотой колебаний резонансного контура.

Измерительные преобразователи фазы в напряжение построены по принципу формирования прямоугольных импульсов, длительность которых пропорциональна измеряемой фазе.

3. Приборы для измерения мощности и энергии.

Электронные приборы для измерения мощности — электронные ваттметры построены на основе измерительного преобразователя мощности в напряжение, на выходе которого устанавливается измерительный механизм со шкалой, градуированной в единицах мощности. Выпускаются измерительные преобразователи активной, реактивной и полной мощности переменного тока, которые предназначены для работы как в однофазных, так и трехфазных цепях.

4. Электронно-лучевые осциллографы.

Электронно-лучевые осциллографы предназначены для визуального наблюдения, измерения и регистрации электрических сигналов, возможность наблюдения изменяющихся во времени сигналов делает осциллограф очень удобным при определении различных амплитудных и временных параметров наблюдаемых сигналов. Важными достоинствами осциллографа являются широкий частотный диапазон, высокая чувствительность и большое входное сопротивление. По количеству одновремен­но исследуемых сигналов осциллографы могут быть одноканальными и многоканальными (в основном двухканальными), В основе работы любых электронных осциллографов лежит преобразование исследуемых сигналов в видимое изображение, получаемое на экране электроннолучевой трубки.

5. Анализаторы спектра.

Анализаторы спектра, называемые также анализаторами гармоник, предназначены для измерения спектра амплитуд, сигналов. Анализ спектра производится двумя способами: первый способ анализа называется последовательным, посколь­ку гармоники определяются поочередно; второй способ – параллельным (или одновременным), так как гармоники определяют­ся одновременно.

Электронным вольтметром называется измерительный прибор, по­казания которого вызываются током от источника питания, а измеряе­мое напряжение управляет величиной этого тока. Электронные вольт­метры имеют в своем составе усилители.

В зависимости от конструкции электронные вольтметры делятся на: универсальные, постоянного и переменного тока, и импульсные. Вольтметры переменного тока обычно строятся по двум структурным схемам (рис.5.11).

Читайте также:  Когда садить под пленку

Вольтметр, схема которого приведена на (рис.5.11,.а), включает делитель напряжения ДН, преобразователь пере­менного напряжения в постоянное ПН, усилитель постоянного тока УПТ и магнитоэлектрический измерительный механизм ИМ (микроамперметр на ток полного отклонения 50-500мкА).

Рисунок 5.11 – Структурные схемы электронных вольтметров

Вольтметры данной схе­мы имеют широкий частотный диапазон (до 700-1000 МГц), но срав­нительно низкую чувствительность (наименьшее значение верхнего предела измерения 1В), что обусловлено нелинейностью вольт-амперных ха­рактеристик выпрямительных элементов.

Вольтметры с предварительным усилением входного переменного напряжения (рис.5.11,б) имеют более узкий частотный диапазон (око­ло 500 кГц), но благодаря предварительному усилению их чувствительность значительно выше – наименьший верхний предел равен 1мВ.

Электронные вольтметры в отличие от электромеханических имеют
большое входное сопротивление. Они обеспечивают измерение напряжений в высокоомных цепях без нарушения их электрических режимов.
Измерения могут проводиться в широком диапазоне частот от постоянного тока до единиц гигагерц.

Обязательным элементом измерительной цепи является преобразователь переменного напряжения в постоянное. Постоянное напряжение на выходе этих преобразователей пропорционально одному из значений измеряемого переменного напряжения: амплитудному, средневыпрямленному, среднеквадратическому. Однако независимо от вида преобразователя шкалу вольтметров переменного тока градуируют в среднеквадратических значениях напряжения синусоидальной формы, что следует учитывать при определении значения измеряемой величины.

Преобразователи напряжения ПН делятся на преобразователи амплитудного, средневыпрямленного (среднего по модулю) и действующего значения. В вольтметрах с предварительным выпрямлением (рис.5.11,а) применяются преобразователи амплитуд­ного значения (ПАЗ), а в вольтметрах по схеме (рис.5.11,б) — преобразователи среднего (ПСЗ) или действующего значения (ПДЗ).

Рассмотрим ПАЗ с открытым входом, которые обычно состоит из диода, конденсатора и сопротивления нагрузки (рис.5.12.а).

Рисунок 5.12 – Схема ПАЗ переменного напряжения

При положительной полуволне входного напряжения (диод открыт) конденсатор заряжается до напряжения, близкого к амплитудному. В отрицательный полупе­риод (диод закрыт) конденсатор разряжается через сопротив­ление нагрузки. Учитывая, что постоянная разряда значительно больше постоянной заряда τр > τ3, то напряжение при его разряде будет уменьшаться незначительно, как показано на (рис.5.12,б). В результате на конденсаторе установится постоянное на­пряжение Uc = Uв, почти равное амплитуде входного напряже­ния

Шкалу вольтметра с ПАЗ градуируют в действующих значениях синусоидального напряжения с учётом коэффициента амплитуды Kа =1,41. При измерении несинусоидальных напряжений возникает погрешность, обусловленная отличием коэффициента амплитуды исследуемого напряжения от заданного.

ПСЗ широко применяются в схемах электронных вольтметров вследствие метрологических характеристик и высокой чувствительности. На (рис.5.13) приведена схема ПСЗ с мостовым выпрямителем в цепи ООС. За счёт высокого коэффициента усиления Ку операционного усилителя, ток в диагонали с ИМ поддерживается пропорционально входному переменному напряжению. Влияние нелинейности вольтамперной характеристики диодов мостовой цепи уменьшается пропорционально коэффициенту усиления усилителя.

Рисунок 5.13 – Схема ПСЗ переменного напряжения

Шкалы вольтметров с ПСЗ также градуируются в действующих значениях синусоидального напряжения, но с учётом коэффициента формы (для синусоидального напряжения Kф = 1,11).

Одним из основных недостатков ПАЗ и ПСЗ является зависимость показаний от формы кривой входного сигнала. Этого недостатка лишены преобразователи действующего значения ПДЗ переменного напряжения.

В электротепловых ПДЗ применяют термопреобразователи, представляющие собой сочетание нагревательного элемента с термопарой. Выходная величина ПДЗ нелинейно связана с действующим значением подаваемого на них напряжения. ПДЗ включает входной усилитель А1, два термопреобразователя ТП1 и ТП2 и выходной усилитель А2 (рис.5.14).

Рисунок 5.14 – Схема ПДЗ переменного напряжения

На вход усилителя А2 поступает разность выходных ЭДС обоих преобразователей ТП1 и ТП2. При этом осуществляется сравнение по действующему значению преобразуемого переменного и выходного постоянного напряжений. В установившемся режиме входное u(t) и выходное постоянное Uвых напряжения равны с высокой точностью.

Читайте также:  Как правильно подключить варочную панель электролюкс

Электронные вольтметры с ПДЗ имеют основную погрешность 0,5-2,5%, широкий частотный диапазон (200кГц-10МГц) и высокую чувствительность (наименьший верхний предел измере­ния — 1 мВ).

Рассматриваемые вольтметры имеют обычно широкий частотный диапазон измерений (10 Гц. 1000 МГц), но не обладают высокой чув­ствительностью, т.е. с их помощью нельзя измерять малые напряжения (меньше нескольких долей вольта), так как преобразователь не обеспе­чивает выпрямление малых сигналов.

Более чувствительными являются вольтметры, выполненные по схеме, представленной на (рис.5.7).

Рисунок 5.7 — Схема аналогового электронного вольтметра переменного тока

Вольтметры этого типа использу­ют для измерения малых напряжений переменного тока от единиц ми­кровольт до единиц вольт. Это возможно благодаря предварительному усилению переменного тока. Однако создание усилителей, работающих в широком диапазоне частот и имеющих большой коэффициент усиле­ния, — трудная техническая задача, поэтому такие вольтметры имеют относительно низкий частотный диапазон (1. 10 МГц).

Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

3.1. Общие сведения

Измерительный прибор (ИП) – наиболее распространенный вид средств измерений. Все ИП можно поделить на две большие груп­пы: аналоговые и цифровые.

Аналоговые измерительные приборы (АИП) – это такие прибо­ры, показания которых – являются непрерывной функцией измене­ния входной измеряемой величины (могущей принимать беско­нечное множество значений в определенном диапазоне). Группу АИП можно представить двумя подгруппами: приборы для стати­ческих измерений (вольтметры, амперметры, омметры и др.) и приборы для динамических измерений.

Приборы для динамических измерений, в свою очередь, делят­ся на показывающие АИП (например, электронно-лучевые осцил­лографы, анализаторы спектра) и регистрирующие приборы (на­пример, самопишущие приборы, светолучевые осциллографы).

В данной главе рассмотрим АИП, предназначенные для стати­ческих измерений: электромеханические и электронные ИП.

Электромеханические ИП основаны на преобразовании элект­рической энергии входного сигнала в механическую энергию уг­лового (реже – линейного) перемещения подвижной части отсчетного устройства. Кроме самостоятельного применения, элект­ромеханические ИП используются также в качестве выходных ус­тройств большинства электронных АИП.

Электронные ИП – это такие АИП, в которых энергия для ме­ханического перемещения указателя отсчетного устройства посту­пает не от источника измеряемого сигнала (как в электромехани­ческих приборах), а от вспомогательного источника энергии, на­пример, от электрической сети, питающей прибор.

3.2. Электромеханические измерительные приборы

Большинство используемых сегодня в технологических процес­сах стационарных измерительных приборов – это классические аналоговые электромеханические приборы. Их метрологические и эксплуатационные характери­стики вполне достаточны для решения основных задач техни­ческих измерений. Широко рас­пространены электромеханиче­ские вольтметры, амперметры, омметры, фазометры, ваттмет­ры, счетчики активной и реак­тивной энергии. В электромеха­нических измерительных прибо­рах реализованы различные фи­зические принципы, позволяю­щие преобразовать значение из­меряемой величины в пропорци­ональное отклонение (видимое перемещение) указателя (напри­мер, стрелки прибора). Упро­щенная классификация элект­ромеханических измерительных приборов приведена на рис. 3.1.

Из всего разнообразия конструкций (систем) и схем электро­механических приборов рассмотрим некоторые наиболее распрос­траненные. Эти устройства лежат в основе измерителей самых раз­личных электрических и неэлектрических величин.

Рис. 3.1. Классификация электромеханических измерительных приборов

3.2.1. Приборы магнитоэлектрической системы

Одной из самых простых (и исторически, пожалуй, самых ран­них) систем, используемых при построении электромеханических приборов является магнитоэлектрическая (МЭ).

Конструкция и принцип действия. На рис. 3.2 упрощенно пока­зана конструкция механизма такой системы, которая содержит пре­образователь электрической величины (входного измеряемого тока) в механическую (угол отклонения) и отсчетное устройство (ука­затель и шкалу).

Постоянный магнит 1, магнитопровод 2 и цилиндрический сер­дечник 3 из магнитомягкого материала создают равномерное ра­диальное магнитное поле в воздушном зазоре, в котором располо­жена и может поворачиваться рамка 4 с измеряемым током. Рамка (несколько десятков витков медного провода) жестко связана с осью 5, на которой закреплена стрелка 7. Эти элементы образуют подвижную часть механизма.

Читайте также:  Книжка подушка своими руками

Как известно, на проводник с током, находящийся в магнит­ном поле, действует сила. При протекании измеряемого тока I в рамке, находящейся в магнитном поле зазора, возникает вращаю­щий момент М, равный произведению индукции В магнитного поля в зазоре, активной (т.е. находя­щейся в магнитном поле) пло­щади рамки S, числу витков w и току I в рамке:

Рис.3.2. Конструкция магнитоэлектрического механизма:

1 – постоянный магнит; 2 – магнитопровод; 3 – цилиндрический сердечник из магнитомягкого материала; 4 – рамка с измеряемым током; 5 – ось; 6 – спиральная пружина; 7 – стрелка; 8 – шкала

Отсчетное устройство – стрелка 7 и шкала 8 – преобра­зует угол отклонения (поворо­та) рамки α в показания (отсчет). Спиральная пружина 6 служит для создания противодействую­щего момента Мпр:

где α – угол поворота подвиж­ной части; Ω – удельный про­тиводействующий момент.

Вращающий момент застав­ляет рамку поворачиваться. Противодействующий момент направ­лен навстречу вращающему. В процессе поворота рамки противо­действующий момент Мпр пропорционально растет. Это происхо­дит до тех пор, пока моменты не станут равными. При М= Мпр

Следовательно, угол поворота а имеет вид

Таким образом, поскольку значения параметров В, S, w, Ω, практически постоянны, можно говорить о линейной зависимос­ти угла поворота α (и, следовательно, показаний) МЭ приборов от значения измеряемой величины (в данном случае тока I).

Амперметры и вольтметры. Для измерения малых токов (до 100 мА) используются непосредственно магнитоэлектрические измерительные механизмы. Если требуется измерять токи, превосхо­дящие ток полного отклонения механизма, то применяются шун­ты (точные резисторы с малым сопротивлением: десятые – ты­сячные доли ома) – рис.3.3,а. При этом через измерительный механизм (ИМ) течет ток Iм, представляющий собой только часть измеряемого тока I. Зная соотношение между сопротивлениями рамки ИМ и шунта Rш, можно переградуировать шкалу прибора или пересчитать показания в результат измерения.

Схема магнитоэлектрического вольтметра приведена на рис. 3.3,б. Последовательно с ИМ включается резистор RV с доста­точно большим сопротивлением. Добавочные резисторы RД1 и RД2 обеспечивают несколько диапазонов измерения напряжения UV

Рассмотрим пример организации многопредельного вольтмет­ра. Предположим, имеется МЭ механизм с сопротивлением RИM = 10 Ом и номинальным током Iном = 0,001 А. Тогда для организа­ции на базе такого механизма вольтметра с диапазоном измерения U1 = 1 В необходимо включить последовательно с механизмом ре­зистор RV с таким сопротивлением, которое обеспечит при изме­ряемом напряжении U1 = 1 В ток через механизм Iном =1,0 мА. Найдем значение этого сопротивления:

Если мы теперь имеем МЭ вольтметр с диапазоном измерения U1 = 1 В и с внутренним сопротивлением Rвн = RИM + RV = 1 кОм, то для расширения предела измерения до U2 = 10 В необходимо включить последовательно добавочный резистор сопротивлением RД1 = 9 кОм. Для расширения предела измерения до U3 = 100 В (т. е. организации еще одного диапазона) необходимо подключить последовательно с имеющимся резистором RД1 еще один добавоч­ный резистор RД2= 90 кОм. Таким образом, получаем схему много­предельного вольтметра постоянного тока (см. рис. 2.3,б).

Особенности магнитоэлектрических приборов. Приборы МЭ си­стемы, по сравнению с другими электромеханическими прибора­ми, имеют ряд преимуществ. Это более высокие точность и чув­ствительность; равномерная (линейная) шкала; сравнительно ма­лое собственное потребление энергии от источника сигнала; прак­тическое отсутствие влияния внешних магнитных полей (так как собственное поле в зазоре значительно). Есть и недостатки. Это возможность работы ИМ только на постоянном токе; сравнительная сложность реальной конструкции; заметная чувствительность к пе­регрузкам, механическим воздействиям, ударам, вибрации; изме­нение упругих свойств пружины со временем, а также зависимость показаний от изменения температуры окружающей среды.

Современные реальные конструкции, конечно, сложнее рас­смотренной.

Обозначение МЭ системы на шкалах приборов:

Ссылка на основную публикацию
Чертеж гусеницы для автомобиля
С развитием техники появляется все больше различных конструкций механизмов, которые эксплуатируются зимой. Но с приходом весны, такие машины остаются невостребованными...
Чем удалить запах из кроссовок
Часто недавно купленные кроссовки начинают источать неприятный аромат. Не всегда проблема кроется в нечистоплотности владельца или плохом качестве изделия. Новую...
Чем удалить клей с авто
Клеили с товарищем молдинги на двери автомобиля суперклеем и случайно замазали им лакокрасочное покрытие. Отскребать клей нельзя, пострадает краска. Пытаться...
Чертеж для кукольного домика
Счастливое детство — это полная интересных игрушек комната. На смену советскому дефициту пришло разнообразие и широкий ассортимент, так что каждый...
Adblock detector