Электронные балласты дневных ламп

Электронные балласты дневных ламп

Источники освещения, называемые люминесцентными, в отличие от снабженных нитью накала аналогов, для работы нуждаются в пусковых устройствах, называемых балластом.

Что представляет собой балласт

Балласт для ЛДС (ламп дневного света) относится к категории пускорегулирующих устройств, которые используются в качестве ограничителя тока. Необходимость в них возникает, если электрической нагрузки недостаточно для эффективного ограничения потребляемого тока.

В качестве примера можно привести обычный источник света, относящийся к категории газоразрядных. Он представляет собой устройство, у которого отрицательное сопротивление.

В зависимости от реализации, балласт может представлять собой:

  • обычное сопротивление ;
  • емкость (обладающую реактивным сопротивлением), а также дроссель;
  • аналоговые и цифровые схемы.

Рассмотрим варианты реализации, получившие наибольшее распространение.

Виды балласта

Наибольшее распространение получили электромагнитная и электронная реализация балласта. Расскажем подробно о каждой из них.

Электромагнитная реализация

В этом варианте работа основывается на индуктивном сопротивлении дросселя (он подключается последовательно лампе). Вторым необходимым элементом является стартер, регулирующий процесс, необходимый для «зажигания». Этот элемент представляет собой компактных размеров лампу, относящуюся к категории газоразрядных. Внутри ее колбы имеются электроды, изготовленные из биметалла (допускается один из них делать биметаллическим). Подключают стартер в параллель к лампе. Ниже показаны два варианта ПРА.

Индуктивно-емкостная (1) и индуктивная реализация (2)

Работа осуществляется по следующему принципу:

  • при поступлении напряжения внутри лампы стартера производится разряд, что приводит к разогреву биметаллических электродов, в следствие чего они замыкаются;
  • замыкание электродов стартера приводит к возрастанию рабочего тока в несколько раз, поскольку его ограничивает лишь внутренне сопротивление катушки дросселя;
  • в следствие повышения уровня рабочего тока лампы, разогреваются ее электроды;
  • стартер остывает, и его электроды из биметалла размыкаются;
  • размыкание цепи стартером приводит к возникновению в катушке индуктивности импульса высокого напряжения, благодаря которому происходит разряд внутри колбы источника, что приводит к его «зажиганию».

После перехода осветительного прибора в штатный режим работы, напряжение на нем и стартере будет меньше сетевого примерно в половину, что недостаточно для срабатывания последнего. То есть он будет находиться в разомкнутом состоянии и не оказывать влияние на дальнейшую работу осветительного устройства.

Такой тип балласта отличается простотой реализацией и низкой стоимостью. Но не следует забывать о том, что данный вариант пускорегулирующих устройств обладает рядом недостатков, таких как:

  • на «зажигание» уходит от одной до трех секунд, причем, в ходе эксплуатации это время будет неуклонно расти;
  • источники с электромагнитным балластом мерцают в процессе работы, что вызывает усталость глаз и может стать причиной головной боли;
  • расход электроэнергии у электромагнитных устройств значительно выше, чем у электронных аналогов;
  • в процессе работы дросселем издается характерный шум.

Эти и другие недостатки электромагнитных пусковых устройств для ЛДС привели к тому, что в настоящее время такие ПРА практически не применяются. Им на смену пришли «цифровые» и аналоговые ЭПРА.

Электронная реализация

Балласт электронного типа, по своей сути, является преобразователем напряжения, при помощи которого осуществляется питание ЛДС. Изображение такого устройства показано на картинке.

Фото электронного устройства для подключения двух ЛДС

Существует множество вариантов реализации электронных балластов. Можно представить характерную для многих устройств этого типа общую блок- схему, которая за небольшими исключениями, используется во всех ЭПРА. Ее изображение представлено на рисунке.

Блок-схема типичной реализации ЭПРА

Многие производители добавляют в устройство блок коррекции коэффициента мощности, а также схему управления яркостью.

Существует два наиболее распространенных способа запуска источников, представляющих собой ЛДС, при помощи электронной реализации балласта:

  1. перед подачей на катоды ЛДС зажигающего потенциала их предварительно подвергают разогреванию. Благодаря высокой частоте поступающего напряжения, достигается две задачи: существенное увеличение КПД и устраняется мерцание. Заметим, что в зависимости от конструкции балласта, зажигание может быть моментальным или постепенным (то есть яркость источника будет постепенно нарастать);
  2. комбинированный метод, он характерен тем, что в процессе «зажигания» принимает участие колебательный контур, который должен войти в резонанс до того, как в колбе ЛДС произойдет разряд. Во время резонанса происходит повышение напряжения, поступающего на катоды, а рост тока обеспечивает их подогрев.

В большинстве случаев при комбинированном методе запуска схема реализована таким образом, что нить накала катода ЛДС (после последовательного подключения через емкость) представляет собой часть контура. Когда происходит разряд в газовой среде люминесцентного источника, это приводит к изменению параметров колебательного контура. В результате он выходит из состояния резонанса. Соответственно, происходит падение напряжения до штатного режима. Пример схемы такого устройства показан на рисунке.

Схема простой электронной реализации баланса для ЛДС мощностью 18Вт

В данной схеме автогенератор построен на двух транзисторах. На ЛДС поступает питание с обмотки 1-1 (которая является повышающей у трансформатора Тр). При этом такие элементы как емкость С4 и дроссель L1 являются последовательным колебательным контуром, с резонансной частотой, отличной от генерируемой автогенератором. Подобные схемы электронного балласта широко распространены во многих бюджетных настольных светильниках.

Видео: как сделать балласт для ламп

Говоря об электронном балласте, нельзя не упомянуть про компактные ЛДС, которые рассчитаны под стандартные патроны Е27 и Е14. В таких устройствах балласт встроен в общую конструкцию.

Установленный внутри источника электронный балласт

В качестве примера реализации ниже показана схема балласта энергосберегающей ЛДС Osram мощностью 21Вт.

Схема балласта для компактной ЛДС Osram

Необходимо заметить, что в связи с особенностями конструкции, к электронным элементам таких устройств предъявляются серьезные требования. В продукции неизвестных изготовителей, может использоваться более простая элементная база, что становится частой причиной выхода компактных ЛДС из строя.

Преимущества

Электронные устройства имеют много преимуществ перед электромагнитными ПРА, перечислим основные из них:

  • электронные пускорегулирующие устройства не вызывают мерцание ЛДС при ее работе и не создают постороннего шума;
  • схема на электронных элементах потребляет меньше энергии, легче весит и более компактна;
  • возможность реализации схемы, производящей «горячий старт», в этом случае происходит предварительный нагрев катодов ЛДС. Благодаря такому режиму включения срок службы источника значительно продлевается;
  • электронное пускорегулирующее устройство не нуждается в стартере, поскольку оно само отвечает за формирование необходимого для старта и работы уровней напряжения.
Читайте также:  Расчет опор под трубопроводы

Люминесцентные лампы представляют собой запаянные колбы с заключенным внутри газом. В результате включения на электродах создается заряд, который приводит к резкому лавинообразному возрастанию тока, что, в свою очередь, приводит к резкому снижению сопротивления в конструкции.

Если не будет организован балласт, то лампа перегревается, а электроды в результате перегрузки могут быстро перегорать. Для решения этой проблемы в схему вводится дроссель, который ограничивает до определенного значения ток.

Что такое

Балласт для ламп дневного света – это пускорегулирующий аппарат. Данное устройство подсоединяется между разрядными лампами и сетью. Это делается для ограничения подачи тока и его регулировки до нужного значения. Газоразрядный источник света с отрицательным сопротивлением – отличный пример данной схемы.

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

Плюсы Минусы
Высококлассный уровень надежности, доказанный практикой и временем. Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции. Повышенный расход электроэнергии.
Удобство эксплуатации модуля. Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей. Слышен гул работы дросселя.
Количество фирм производителей. Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
Достоинства Недостатки
Автоматическая настройка балласта под различные виды ламп. Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Как подобрать

  1. При выборе балласта для люминесцентной лампы необходимо обратить внимание на мощность модуля. Она должна совпадать с показателями мощности осветительного прибора. Если не соблюдать эти требования, то прибор не будет функционировать должным образом;
  2. Стоимость. Электромагнитные элементы уступают в цене электронным. Но, технически они устарели и в эксплуатации уступают дополнительными энергозатратами и громоздкостью;
  3. Стоимость на электронные балласты выше, но практичность и экономия электроэнергии перекрывает этот недостаток.

Брендовые производители включают в комплектацию качественные детали, способствующие корректной работе на протяжении долгого времени. Такие устройства смогут отработать срок гарантии.

Необходимо обратить внимание на наличие маркировки IP2, проставленной на изделиях. Это указывает на то, что прибор имеет нужный уровень защиты, а также защищен от попадания внутрь корпуса мелких элементов. Конструкция исключает прямой контакт пользователя с элементами, подводящими электроэнергию.

Температурный диапазон существенно расширен. Приборы могут функционировать при температуре от -20 °C до + 40 °C.

Лучшие производители электромагнитных аппаратов

По статистике лучшее электромагнитное устройств у известного бренда E.Next. Это неудивительно, данная компания выпускает высококлассные модули, отличающиеся своей надежностью и долговечностью. Продукция выполнена в соответствии со строгими требованиями, которые причисляются к товарам данного класса. На всю линейку товаров компания E.Next предоставляет гарантию, а также предлагает своим клиентам качественное обслуживание. Клиент может обратиться в один из множества call-центров и задать вопрос сотрудникам технической поддержки.

Читайте также:  Arte lamp anetta a6157pl 5ab

Европейская компания Philips не уступает своим коллегам по производству электромагнитных балластов. Изделия данной торговой марки считаются одними из самых надежных и эффективных на рынке. Поэтому выбрать необходимую модель для лампы накаливания не составит труда.

Актуальные электронные модули

Первое место данного типа оборудования, достается товарам от компании Osram. Стоимость продукции данной марки, будет значительно выше стоимости аналогов отечественного или китайского производства. Но модули этой фирмы уступают в цене конкурентам Vossloh-Schwabe или Philips.

Более бюджетный вариант,предлагает фирма Horos. Несмотря на низкие финансовые затраты, данные балласты демонстрируют хороший уровень КПД высокую степень рабочей эффективности.

Сравнительно молодая компания Feron уже успела положительно зарекомендовать себя среди множества постоянных потребителей. Важно отметить грамотное соотношение доступной цены и высокого качества изделий. В их комплектацию входит: надежный предохранитель, защищающий от внезапных перепадов напряжения и различных помех, исключается светомерцание и экономия энергозатрат до 30%.

Как проверить

Перед проверкой нужно снять трубку, после этого закоротить нити накала, а после, между ними, подключить к питанию лампу накаливания на 220 В. Специалисты рекомендуют не включать в сеть любую схему без лампочки. Работающая лампочка, после подключения системы к цепи, укажет на исправность балласта.

Основные неисправности

Как правило, причиной вышедшего из строя осветительного прибора могут стать разлады в схеме регулирующего запуск аппарата, а также износ деталей и перегорание лампы. Если грамотно определить причины поломки, то можно произвести самостоятельный ремонт прибора освещения.

Ремонт

В первую очередь стоит обратить внимание на состояние предохранителя, так как чаще всего именно его выход из строя является основной причиной неполадок в работе балласта. Однако, это может быть причиной более серьезных поломок пускорегулирующего аппарата.

Проверить диоды и транзисторы, нужно при помощи мультиметра. Специалисты рекомендуют выпаять их из платы, чтобы сопротивление других элементов не искажало показания. Важно! Новые элементы необходимо паять с осторожностью, они довольно чувствительны к перегреву.

Схемы электронного

В зависимости от типа конкретной лампочки элементы ЭПРА могут иметь различную реализацию, как по электронной начинке, так и по встраиваемости. Ниже будут рассмотрены несколько вариантов для приборов с различной мощностью и конструкцией.

Схема ЭПРА для ламп дневного света с мощностью 36 Вт

В зависимости от применяемых электронных деталей по типу и техническим показателям у балластников электрическая схема может существенно отличаться, однако выполняемые ими функции будут такими же.

На приведенном выше рисунке в схеме используются такие элементы:

  • диоды VD4–VD7 предназначены для выпрямления тока;
  • конденсатор С1 предназначен для фильтрации тока, проходящего через систему диодов 4-7;
  • конденсатор С4 начинает зарядку после подачи напряжения;
  • динистор CD1 пробивается в момент достижения напряжением показателя 30 В;
  • транзистор T2 открывается после пробития 1 динистора;
  • трансформатор TR1 и транзисторы T1, T2 запускаются в результате активации на них автогенератора;
  • генератор, дроссель L1 и последовательные конденсаторы С2, С3 на частоте примерно 45–50 кГц начинают резонировать;
  • конденсатор С3 включает лампу после достижения на нем пусковой величины заряда.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 36 Вт

В приведенной схеме есть одна особенность – колебательный контур встраивается в конструкцию самого осветительного прибора, что обеспечивает резонанс прибора до момента появления в колбе разряда.

Таким образом, частью контура будет выступать нить накала лампы, что в момент появления разряда в газовой среде сопровождается изменением в колебательном контуре соответствующих параметров. Это выводит его с резонанса, что сопровождается снижением до рабочего уровня напряжения.

Схема ЭПРА для ЛДС с мощностью 18 Вт

Лампы, которые оснащены Е27 и Е14 цоколем сегодня получили наибольшее распространение среди потребителей. В этом приборе балласт встраивается прямо в конструкции устройства. Выше приведена соответствующая схема.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 18 Вт

Необходимо учитывать особенность строения автогенератора, в основу которого входит пара транзисторов.

Из повышающей обмотки, обозначенной на схеме 1-1 трансформатора Тр, поступает питание. Частями последовательного колебательного контура выступает дроссель L1 и конденсатор С2, резонансная частота которого от генерируемой автогенератором существенно отличается. Приведенная выше схема используется для настольных осветительных приборов бюджетного класса.

Схема ЭПРА в более дорогих устройствах для ЛДС с мощностью 21 Вт

Необходимо отметить, что более простые схемы балласта, которые применяются для осветительных приборов типа ЛДС, не смогут гарантировать длительную эксплуатацию лампы, поскольку подвергаются большим нагрузкам.

У дорогих изделий такой контур обеспечивает стабильное функционирование на протяжении всего эксплуатационного срока, поскольку все используемые элементы соответствуют более серьезным техническим требованиям.

Блок питания из балласта

Переоборудование балласта в блок питания заключается в следующем:

Демонтаж корпуса балласта происходит при помощи отвертки. Необходимо применять минимальное усилие, чтобы не увеличивать силу давления на колбу.
Разделить жилки контактов самой лампы от платы, отматывая их с четырех штырей.
После извлечения платы штырьки соединяют при помощи перемычек.
Далее стоит посмотреть, какой именно трансформатор будет использован в новой схеме, а именно: уже имеющийся дроссель, или новый трансформатор.

Чтобы грамотно подобрать нужный балласт для люминесцентной лампы, нужно :

  • понимать принцип устройства данного элемента и его функции;
  • при подборе балласта полагаться на проверенного производителя;
  • обратить внимание на стоимость и фирму;
  • мощность модуля должна совпадать с мощностью осветительного прибора.

В люминесцентных лампах используются электронные и магнитные балласты разной схемы. По большей части такие устройства определяют стоимость осветительного прибора, поскольку способные длительное время поддерживать работоспособность прибора.

В недорогих изделиях не только применяются упрощенные схемы, но и элементы несоответствующего качества, которые физически не способны выдержать создаваемые током цепи нагрузки. Поэтому выбор ламп должен основываться именно на схеме балласта, гарантийном сроке работы изделия и его качестве.

Современные электронные балласты своми руками.

Автор: Анисимов Иван
Опубликовано 01.01.1970

Читайте также:  Электропечь эпэ 140 400

Освещение лампами дневного света имеет значительное преимущество перед лампами накаливания: экономичность, более длительный срок службы, высокий КПД, малое количество тепла рассеиваемого лампой, спектр света излучаемого данными лампами более близок к естественному, по сравнению со столь привычными накальными. И естественно имеют недостатки, это: сложность включения ламп дневного освещения, возникновение стробоскопических эффектов на движущихся механизмах, сравнительная дороговизна.
Несмотря на сильное развитие современных электронных балластов для питания ламп дневного освещения (ЛДС), стандартной схемой включения ЛДС принято считать схему изображенную на рисунке.

Принцип действия прост, но всё таки требует определённых условий для нормального эксплуатирования ЛДС. Для зажигания люминесцентной лампы и ее нормальной работы требуется стартер (пусковое устройство), дроссель (ПРА — пускорегулирующий аппарат), конденсаторы. Стартер служит для автоматического включения и выключения предварительного накала электродов. Он представляет собой баллон из стекла, наполненный инертным газом, в котором находятся металлический и биметаллический электроды, выводы которых соединены с выступами в цоколе для крепления в схеме лампы. При включении лампы согласно вышеуказанной схеме, а на электроды лампы и стартера подается напряжение сети, которое достаточно для образования тлеющего разряда между электродами стартера. Поэтому в цепи протекает ток тлеющего разряда стартера, примерно 0,01. 0,04 А. Тепло, выделяемое при протекании тока через стартер, нагревает биметаллический электрод, который выгибается в сторону другого электрода. Через промежуток времени тлеющего разряда 0,2. 0,4 с контакты стартера замыкаются, и по цепи начинает течь пусковой ток, величина которого определяется напряжением сети и сопротивлениями дросселя и электродов лампы. Этого тока не достаточно для нагревания электродов стартера, и биметаллический электрод стартера разгибается, разрывая цепь пускового тока. Предварительно пусковой ток разогревает электроды лампы. Благодаря наличию в цепи индуктивности, при размыкании контактов стартера в цепи возникает импульс напряжения зажигающий лампу. Время разогрева электродов лампы составляет 0,2. 0,8 секунд что в большинстве случаев недостаточно, и лампа может не загореться с первого раза, и весь процесс может повториться. Общая длительность пускового режима лампы составляет 5. 15 с. Длительность пускового импульса при размыкании контактов стартера составляет 1. 2 мкс, что недостаточно для надежного зажигания лампы, поэтому параллельно контактам стартера включают конденсатор емкостью 5. 10 пФ. Дроссель, представляющий собой обмотку, намотанную на сердечник из листовой электротехнической стали, облегчает зажигание лампы, а также ограничивает ток и обеспечивает ее устойчивую работу (иногда дроссель заменяют компенсирующим конденсатором, лампочкой накаливания небольшой мощности). На рисунке 1, приведена простейшая схема стартерного зажигания люминесцентной лампы, включенной в сеть 127—220 В. Проблема рассматриваемой схемы в том что в момент размыкания стартера не всегда совпадает с полуволной напряжения сети, и срабатывание стартера происходит вхолостую. Схема конечно куда проще, чем те которые будут описываться ниже. Но всё таки схемы рассматриваемые далее находят своё применение в действительно качественных и экономичных системах освещения.
И так.

Электронный балласт на микросхеме IR2153

Что же относительно конкретных схемных решений, то я постараюсь осветить решения на основе микросхем фирмы-производителя International Rectifier.
Схема представленная на рисунке, представляет собой преобразователь сетевого напряжения 220 В, 50 Гц в 160 В 33 кГц. Именно полученные выходные параметры и являются теми факторами, значительно повышающими эксплуатационные характеристики источников света на основе ЛДС.
Первый фактор: Полностью исключается беспорядочное мерцание лампы в момент первоначального запуска.
Второй: Возникающий во время старта потенциал, достаточный для гарантированного поджога лампы с первого раза. Время запуска составляет примерно 0,5 сек.
Третий: Благодаря высокочастотной коммутации, газ в лампе не успевает деионизироваться в периодах спадания синусоиды питающего тока до нуля, а значит для нормальной работы лампы требуется меньшее напряжение. Это основная экономия электроэнергии.
Четвёртый: Полное отсутствие стробоскопического эффекта на движущихся механизма, вследствии отсутствия 100Гц (удвоенной частоты сети) пульсаций света.
Пятый: Требуется дроссель с меньшей индуктивностью, а значит и с меньшими размерами, весом, тепловыми, омическими потерями и стоимость.
Перед выше перечисленым можно смело ставить знак "+"
Ну и куда же деться от недостатков, они у нас таковы:
Первый: Относительная сложность схемы.
Второй: Относительно высокая стоимость изготовления такого аппарата (если речь идёт о питании одной лишь лампы).
Третий: Высокий уровень ЭМИ.

Схема состоит из основных узлов: фильтр питающего напряжения, выпрямитель сетевого напряжения, генератор-драйвер управления высоковольтными MOSFET транзисторами, полумост ключей и нагрузка в роли которой выступает лампа с балластным дросселем.
Ничего особо необычного схема не содержит и не является сложной.
Сетевое напряжение подаётся через сетевой фильтр L1, C2. Поступает на выпрямитель VD1, C3. Сформированные на конденсаторе С3 310В напрямую запитывают полумост транзисторов VT1, VT2 и через гасящий резистор R2 получаем необходимые для работы микросхемы 9-10В.
После подключения к сети примерно через 0,5 секунды на выходе схемы (правая по схеме обкладка конденсатора С8) появляется меандр в 165В с небольшой "полочкой" между открытыми состояниями транзисторов. Поданное на лампу ВЧ напряжение в течении ещё примерно 0,5 сек. прогревает катоды. Проявляется это в виде кратковременного тусклого оранжевого свечения катодов, после достаточной ионизации газа в колбе лампы, за счёт высоковольтных выбросов с дросселя L2, газовый промежуток пробивается. И, как же без последствий — лампа зажглась! Дальнейшая работа сопровождается прогревом лампы и индуктивности в результате чего яркость несколько увеличивается.
"Двигателем" схемы является микросхема генератор-драйвер. В содержимом которой можно разобраться исходя из вот этого рисунка:

Микросхема содержит подобие 555-го таймера, фазорасщепляющий триггер, формирователь "мёртвого" промежутка позволяющий избежать сквозного тока в выходных ключах, схему питания драйвера верхнего ключа, схему контроля заниженного напряжения, стабилитрон основного питания и даже цепь задержки, позволяющая выровнять время распространения сигналов по каналам верхнего и нижнего ключа, а также ещё несколько дополнительных узлов, в которых разбираться нет смысла.

Ссылка на основную публикацию
Adblock detector