Электростатическое поле и его основные характеристики

Электростатическое поле и его основные характеристики

Все тела в природе способны электризоваться, т.е. приобретать электрический заряд. Наличие электрического заряда проявляется в том, что заряженное тело взаимодействует с другими заряженными телами. Имеются два вида электрических зарядов, условно называемых положительными и отрицательными. Одноименные заряды отталкиваются, разноименные – притягиваются.

Электрический заряд является неотъемлемым свойством некоторых элементарных частиц. Заряд всех заряженных элементарных частиц одинаков по абсолютной величине и равен 1,6×10 –19 Кл. Носителем элементарного отрицательного электрического заряда является, например, электрон. Протон несет положительный заряд, нейтрон электрического заряда не имеет. Атомы и молекулы всех веществ построены из протонов, нейтронов и электронов. Обычно протоны и электроны присутствуют в равных количествах и распределены в веществе с одинаковой плотностью, поэтому тела нейтральны. Процесс электризации заключается в создании в теле избытка частиц одного знака или в их перераспределении (создании в одной части тела избытка заряда одного знака; при этом в целом тело остается нейтральным).

Взаимодействие между покоящимися электрическими зарядами осуществляется через особую форму материи, называемую электрическим полем. Всякий заряд изменяет свойства окружающего его пространства – создает в нем электростатическое поле. Это поле проявляет себя в силовом действии на любой электрический заряд, помещенный в какую-либо его точку. Опыт показывает, что отношение силы , действующей на точечный заряд q, помещенный в данную точку электростатического поля, к величине этого заряда для всех зарядов оказывается одинаковым. Это отношение называется напряженностьюэлектрического поляи является его силовой характеристикой:

(2.6.5)

Опытным путем установлено, что для электростатического поля справедлив принцип суперпозиции:электростатическое поле , порождаемое несколькими зарядами, равно векторной сумме электростатических полей , порождаемых каждым зарядом в отдельности:

. (2.6.6)

Заряды, помещенные в электростатическое поле, обладают потенциальной энергией. Опыт показывает, что отношение потенциальной энергии W положительного точечного заряда q, помещенного в данную точку поля, к величине этого заряда есть величина постоянная. Это отношение является энергетической характеристикой электростатического поля и называется потенциалом:

Потенциал электростатического поля численно равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки в бесконечность. Единица измерения вольт (В). Две характеристики электростатического поля – напряженность и потенциал связаны между собой соотношением [ср. с выражением (2.6.4)]

(2.6.8)

Знак “минус” указывает, что вектор напряженности электрического поля направлен в сторону уменьшения потенциала. Отметим, что если в некоторой области пространства потенциалы всех точек имеют одинаковый потенциал, то

Электростатическое поле также можно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовой линиейэлектрического поля называется воображаемая линия, касательная к которой в каждой точке совпадает с направлением вектора напряженности . Силовые линии электростатического поля оказываются разомкнутыми:они могут начинаться или заканчиваться только на зарядах либо уходить в бесконечность.

Для графического изображения распределения потенциала электростатического поля используют эквипотенциальные поверхности – поверхности, во всех точках которых потенциал имеет одинаковое значение.

Легко показать, что силовая линия электростатического поля всегда пересекает эквипотенциальную поверхность под прямым углом. На рисунке 10 представлены силовые линии и эквипотенциальные поверхности точечных электрических зарядов.

Рисунок 10 – Силовые линии и эквипотенциальные поверхности точечных зарядов

Магнитное поле

Опыт показывает, что подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током и постоянные магниты. Название “магнитное поле” связывают с фактом ориентации магнитной стрелки под действием поля, создаваемого током (Х. Эрстед, 1820).

Электрическое поле действует как на неподвижные, так и на движущиеся в нем электрические заряды. Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды.

Опыт показывает, что магнитное поле оказывает ориентирующее действие на магнитную стрелку и рамку с током, поворачивая их определенным образом. За направление магнитного поля в данной точке принимается направление, вдоль которого свободно устанавливается ось тонкой магнитной стрелки в направлении с юга на север или положительная нормаль к плоскому контуру с током.

Читайте также:  Работа транзистора в ключевом режиме простым языком

Количественной характеристикой магнитного поля является вектор магнитной индукции . Магнитная индукция в данной точке численно равна максимальному вращающему моменту, действующему на плоскую рамку с током с магнитным моментом pm=1 А×м 2 :

Опытным путем установлено, что для магнитного поля также справедлив принцип суперпозиции:магнитное поле , порождаемое несколькими движущимися зарядами (токами), равно векторной сумме магнитных полей , порождаемых каждым зарядом (током) в отдельности:

(2.6.10)

Магнитное поле изображают с помощью силовых линий – линий, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции . Силовые линии магнитного поля можно “проявить” с помощью железных опилок, намагничивающихся в исследуемом поле и ведущих себя подобно маленьким магнитным стрелкам. Опыт показывает, что линии магнитной индукции всегда замкнуты и охватывают проводники с током. Этим они отличаются от силовых линий электростатического и гравитационного полей, которые являются разомкнутыми. Поле, обладающее замкнутыми силовыми линиями, называется вихревым.

На рисунке 11 представлены силовые линии магнитного поля полосового магнита. Видно, что магнитное поле имеет замкнутые силовые линии; это поле неоднородно. Однородное магнитное поле можно получить с помощью соленоида.

Рисунок 11 Магнитное поле полосового магнита

ВВЕДЕНИЕ.

Лабораторный практикум является руководством по выполнению лабораторных работ по разделам «Электричество. Оптика». Первая часть работы содержит теоретическое описание основных тем курса, тесно связанных с содержанием лабораторных работ. Вторая часть практикума посвящена описанию методики эксперимента и порядку его выполнения.

В теоретическом введении по электростатике описываются основные характеристики и свойства электростатического поля.

В темах “Постоянный ток”, “Переменный ток” излагаются основные законы электрических цепей.

В теме “Электромагнетизм” описаны явление электромагнитной индукции и свойства магнитных материалов.

Теоретическое введение по оптике содержит описание волновых и квантовых свойств света.

В каждой теме указаны номера лабораторных работ, в которых она отражается, и даны вопросы для самоконтроля.

Описание лабораторных работ содержит схему лабораторной установки, методическое обоснование эксперимента и порядок его выполнения.

При подготовке к отчету по выполненному эксперименту студент должен изучить соответствующую тему теоретического введения, затем рассмотреть, как основные положения и законы отражены в обосновании методики эксперимента. Данные опытов, результаты расчетов, выводы записываются в рабочую тетрадь.

Тема 1.ХАРАКТЕРИСТИКИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Теоретическое введение к лабораторной работе №21

Основные характеристики электростатического поля и его графическое изображение

Взаимодействие между заряженными телами осуществляется посредством электромагнитного поля.

Одним из видов электромагнитного поля является электростатическое поле – поле, создаваемое неподвижными зарядами.

Основными характеристиками электростатического поля являются напряжённость и потенциал.

Напряженность – силовая характеристика электростатического поля.

Напряженностью электростатического поля в данной точке называется физическая величина, равная отношению силы, действующей на заряд, к величине заряда, помещенного в данную точку поля.

(1.1)

Направление вектора совпадает с направлением силы, действующей на положительный заряд в данной точке поля.

Если поле создается точечным зарядом , то величина (модуль) силы, действующей между зарядами и , определяется законом Кулона:

, откуда , (1.2)

где r – расстояние от заряда до данной точки, а E – модуль напряженности, — диэлектрическая проницаемость (в вакууме ).

В единицах СИ: , где .

Расчет дает значение .

Если электростатическое поле создается системой зарядов, то напряженность поля в точке равна векторной сумме напряженностей, созданных в этой точке каждым зарядом в отдельности (принцип суперпозиции).

(1.3)

При перемещении заряда из точки 1 в точку 2 (рис. 1.1) электрическое поле совершает работу. Если поле создано точечным зарядом , а перемещается точечный заряд , то работа с учетом формул (1.1) и (1.2) равна:

,(1.4)

где и — расстояния от начальной и конечной точек траектории до заряда . (Учтено, что .)

1 dr

2

Из формулы (1.4) следует, что работа по перемещению заряда не зависит от траектории, а определяется лишь начальным и конечным положением заряда. Поле, обладающее таким свойством, называется потенциальным, а силы, действующие в этом поле, консервативными.

Читайте также:  Топ 10 мотоблоков среднего класса

Если , то , т.е. работа по перемещению заряда по замкнутому контуру равна 0.

Работа в потенциальном поле равна убыли потенциальной энергии . Поэтому из формулы (1.4) следует, что потенциальная энергия равна:

с точностью до постоянной. (1.5)

Энергетической характеристикой каждой точки электростатического поля является потенциал.

Потенциал – физическая величина, равная отношению потенциальной энергии заряда в данной точке поля к величине этого заряда.

. (1.6)

Из формул (1.5) и (1.6) следует, что в поле, созданном точечным зарядом , потенциал в точке на расстоянии от заряда равен:

. (1.7)

. (1.8)

Потенциал – скалярная величина.

Знак потенциала совпадает со знаком заряда , создающего электростатическое поле. Если поле создается системой зарядов, то потенциал в данной точке равен алгебраической сумме потенциалов, созданных в этой точке каждым зарядом.

. (1.9)

Связь между напряженностью и потенциалом может быть найдена из следующих соображений. Работа по перемещению заряда вдоль оси x, на пути dx равна:

, где – проекция вектора на ось x (рис. 1.2). С другой стороны, работа может быть определена как .

Приравняв эти выражения, получим:

. (1.10)

q dx x

Аналогичными рассуждениями можно найти проекции вектора на оси y и z.

Таким образом, вектор равен:

. (1.11)

Напряженность электрического поля равна градиенту потенциала, взятому со знаком минус, то есть вектор напряженности направлен в сторону уменьшения потенциала.

Графически электростатическое поле изображается с помощью силовых линий и эквипотенциальных поверхностей.

Силовой линией (или линией напряженности) называется линия, касательная к которой в каждой точке совпадает с направлением вектора напряженности в данной точке.

Силовые линии не пересекаются, так как в каждой точке вектор напряженности имеет единственное направление. Силовые линии проводятся с определенной густотой.

Условились полагать, что модуль в данной точке численно равен количеству силовых линий, проходящих через единицу площади, перпендикулярной силовым линиям, в окрестности данной точки.

Силовые линии электростатического поля начинаются на положительных зарядах и заканчиваются на отрицательных.

Эквипотенциальными поверхностями называются поверхности, все точки которых имеют одинаковый потенциал.

Условились эквипотенциальные поверхности проводить таким образом, чтобы разность потенциалов между соседними поверхностями была постоянной. Поэтому по густоте эквипотенциальных поверхностей можно судить о напряженности поля. Выясним каково взаимное расположение силовых линий и эквипотенциальных поверхностей.

q

Из формулы (1.8) работа при перемещении точечного заряда по эквипотенциальной поверхности равна нулю, с другой стороны, , где — угол между и (рис. 1.3).

Следовательно, и , т.е. силовые линии перпендикулярны эквипотенциальным поверхностям.

2. Интегральные характеристики векторных полей: поток и циркуляция

Для описания векторных полей, в частности электромагнитных, очень удобными являются понятия потока и циркуляции.

2.1. Поток вектора

Потоком вектора через поверхность S называется величина, равная интегралу от скалярного произведения векторов и (рис. 1.4).

Вектор имеет модуль равный величине площади , а направление совпадает с направлением внешней нормали .

. (1.12)

Интеграл вычисляется по всей поверхности S. Если поверхность замкнутая, то интеграл берется по замкнутой поверхности, тогда

.

Поток вектора является алгебраической величиной: зависит не только от конфигурации поля, но и от выбора направления .

Для замкнутых поверхностей за положительное направление принимается внешняя нормаль, т.е. нормаль, направленная наружу области, охватываемой поверхностью.

Если , то : при и при , . Поток через поверхность S численно равен числу силовых линий, пересекающих эту поверхность.

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

Читайте также:  Как наклеить молдинги на обои

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j — это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

U = j1 — j2 — разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 — j2 = А/q — — напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м 2 . Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F 0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:

Ссылка на основную публикацию
Электрическая схема видеомагнитофона panasonic nv hv60
Бесплатная техническая библиотека: ▪ Все статьи А-Я ▪ Энциклопедия радиоэлектроники и электротехники ▪ Новости науки и техники ▪ Журналы, книги,...
Штукатурка силин фасадный unis
Для выравнивания ручным и машинным способом поверхностей фасадов зданий и сооружений выше цокольной части без штукатурной сетки слоем до 30...
Штукатурка со звукоизолирующими свойствами
на 1 кг смеси 0,45 - 0,5 л на 12 кг смеси 5,4 - 6,0 л Расход при толщине слоя...
Электрические измерения и испытания электроустановок
Испытание электроустановок реализует компания «ИНТЕХ» (Москва). Чтобы получить КП на испытание электроустановок, позвоните по телефону: . Отправить заявку Электрооборудование регулярно...
Adblock detector