Условия существования электрического тока в проводнике

Условия существования электрического тока в проводнике

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

наличие в среде свободных электрических зарядов;
создание в среде электрического поля.

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимодля создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью Eдействует сила F= q*E,которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепина заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

1.Сила тока — I, единица измерения — 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

т.е. = q’, гдеq’- производная от заряда по времени.

2.Плотность тока — j, единица измерения — 1 А/м2.

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

3.Электродвижущая сила источника тока — э.д.с. (e), единица измерения — 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

4.Сопротивление проводника — R, единица измерения — 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

l — длина проводника,

S — площадь поперечного сечения,

r — коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

Коэффициент a называется температурным коэффициентом сопротивления:

а = (R — R0) / R0 * т.

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t)для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью с

5.Напряжение — U , единица измерения — 1 В.

Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (ст. + Аэл.) / Q (8)

Так как Аст./q = e, а Аэл./q = f1-f2, то

2.7.2 Основы электробезопасности

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.

Опасность поражения электрическим током усугубляется тем, что, во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых,воздействие тока вызывает у человека резкую реакцию отдергивания, а в ряде случаев и потерю сознания, что при работе навысоте может привести к травмированию в результате падения.

Читайте также:  Мебель игрушечная своими руками фото

Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови.

Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмах возникает местное повреждение организма, выражающиеся в появлении электрических ожогов,

электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы, или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельностинаиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца.

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги — наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов — контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог – это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока. Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает.

Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

Оценивать опасность воздействия электрического тока на человека проявляются три качественно отличные ответные реакции. Это прежде всего ощущение, более судорожное сокращение мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

С увеличением тока четко проявляются три качественно отличные

ответные реакции. Это прежде всего ощущение, более судорожное сокращение

мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

В целях обеспечения электробезопасности используют следующие технические способы и средства (часто в сочетании одного с другим): защитное заземление; зануление; защитное отключение; выравнивание потенциалов; малое напряжение; электрическое разделение сети; изоляцию токоведущих частей; оградительные устройства; предупредительную сигнализацию, блокировку, знаки безопасности; электрозащитные средства, предохранительные приспособления и др.

Защитное заземление — преднамеренное электрическое соединение с землей или ее эквивалентом металлических не токоведущих частей, которые могут оказаться под напряжением в результате повреждения изоляции (ГОСТ 12.1.009-76). Защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземленной нейтралью.

Защитное отключение — это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки (не более чем за 0,2 с) при возникновении в ней повреждения, в том числе при пробое изоляции на корпус оборудования.

Выравнивание потенциалов— метод снижения напряжений прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

Малое напряжение — номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током.

Электрическое разделение сети — разделение сети на отдельные, электрически не связанные между собой, участки с помощью разделяющего

трансформатора. Если сильно разветвленную электрическую сеть, имеющую

Читайте также:  Как перевести рисунок с бумаги на руку

большую емкость и малое сопротивление изоляции, разделить на ряд небольших сетей такого же напряжения, то они будут обладать незначительной емкостью и высоким сопротивлением изоляции. Опасность поражения током при этом резко снижается.

Изоляция в электроустановках служит для защиты от случайного прикосновения к токоведущим частям. Различают рабочую, дополнительную, двойную и усиленную электрическую изоляцию.

Оградительные устройства используются для предотвращения прикосновения или опасного приближения к токоведущим частям.

Блокировки широко применяются в электроустановках. Они бывают механическими, электрическими, электромагнитными и др. Блокировки обеспечивают снятие напряжения с токоведущих частей при попытке проникнуть к ним при открывании ограждения без снятия напряжения.

Механическое воздействие

Механические воздействия со стороны окружающей среды сопровождают человека всю жизнь. Такие воздействия могут быть непрерывными (сила тяжести, атмосферное давление) или кратковременными (аварии, спортивные травмы, погружение в воду). Биомеханические проявления механического воздействия зависят от его продолжительности и интенсивности. Например, воздействие на голову силы величиной в десятки килоньютон приводит к разрушению костей свода черепа за доли миллисекунды. Если силу воздействия уменьшить на порядок, а время воздействия на порядок увеличить, то разрушение охватит большие области черепа. Дальнейшее снижение интенсивности и увеличение времени воздействия приведет к тому, что разрушение черепа не наступит, но возникнет перемещение мозга относительно черепа.
По характеру действия механические воздействия можно условно разделить на два вида: статические и динамические.

Вид воздействий Проявление
Статические Телу (отдельным элементам) сообщаются малые ускорения, которые можно не учитывать
Динамические Телу (отдельным элементам) сообщаются большие ускорения, с которыми связаны значительные силы инерции

Статические воздействия.Длительные (регулярные) статические воздействия приводят к направленным изменениям в организме. К таким воздействиям можно отнести многие виды тренировок спортсменов. Так, регулярные нагрузки на определенные группы мышц приводят к увеличению их объема и силы (гантели, штанга, тренажеры). Упражнения на растяжку позволяют увеличить эластичность мышц и связок.
В то же время длительные статические нагрузки могут привести и к развитию заболеваний. Например, к искривлению позвоночника при неправильной осанке. Отметим также, что длительные статические нагрузки целенаправленно использовались для создания анатомических изменений, в соответствии с «местными» представлениями о красоте. Например, тугое пеленание ступней девочек в Китае для ограничения их роста.
Кратковременные статические нагрузки, приложенные в соответствующих направлениях, могут привести к серьезным травмам или летальному исходу. На этом основано действие болевых приемов.
Динамические кратковременные воздействия.Кратковременные динамические воздействия часто называют ударными. Они характеризуются высокой интенсивностью и малой длительностью. Например, воздействие на организм при катапультировании. Ударные воздействия сопровождаются значительным ускорением тела или его отдельных частей. Перегрузки, возникающие при ударных воздействиях, принято выражать отношением к ускорению свободного падения:

Понятие ударного воздействия достаточно условно. Некоторые авторы относят к ударным воздействия, длительность которых менее одной секунды. Однако следует иметь в виду, что травмы органов могут возникнуть при перегрузках любой длительности. Поэтому предельную допустимую длительность перегрузки определяют с физиологических позиций. Она может лимитироваться не .только уровнем механических напряжений в тканях, но и перемещением жидких сред организма, например, перемещением крови при выполнении фигур пилотажа.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Читайте также:  Чем закрыть торцы бруса

Основные понятия.

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q величина заряда (количество электричества), t — время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжениескалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A полная работа сторонних и кулоновских сил, q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l длина участка проводника, S площадь поперечного сечения проводника.

Проводимостью называется величина, обратная сопротивлению

Законы Ома.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R электрическое сопротивление внешнего участка цепи, r — электрическое сопротивление внутреннего участка цепи.

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением R Стр 5 из 11 5 6 7 8 9 10 11

Для возникновения и существования постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряженных частиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах, то их перемещение не приведет к появлению электрического тока.

Но наличие свободных зарядов еще недостаточно для возникновения тока. Для создания и поддержания упорядоченного движения заряженных частиц необходима, во-вторых, снла, действующая на них в определенном направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротивления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молекулами электролитов.

На заряженные частицы, как мы знаем, действуег электрическое поле с силой Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между концами проводника, в соответствии с формулой (8.28), существует разность потенциалов. Когда эта разность потенциалов не меняется во времени, то в проводнике устанавливается постоянный ток. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального — на другом. Это уменьшение потенциала можно обнаружить на простом опыте.

В качестве проводника возьмем не очень сухую деревянную палку и подвесим ее горизонтально. (Такая палка, хотя и плохо, но все же проводит ток.) Источником напряжения пусть будет электростатическая машина. Для регистрации потенциала различных участков проводника относительно земли можно

использовать листочки металлической фольги, прикрепленные к палке. Один полюс машины соединим с землей, а второй — с одним концом проводника (палки). Цепь окажется незамкнутой. При вращении рукоятки машины мы обнаружим, что все листочки отклоняются на один и тот же угол (рис. 146). Значит, потенциал всех точек проводника относительно земли одинаков. Так и должно быть при равновесии зарядов на проводнике. Если теперь другой конец палки заземлить, то при вращении рукоятки машины картина изменится. (Так как земля — проводник, то заземление проводника делает цепь замкнутой.) У заземленного конца листочки вообще не разойдутся: потенциал этого конца проводника практически равен потенциалу земли (падение потенциала в металлической проволоке мало). Максимальный угол расхождения листочков будет у конца проводника, присоединенного к машине (рис. 147). Уменьшение угла расхождения листочков по мере удаления от машины свидетельствует о падении потенциала вдоль проводника.

1. Что называют электрическим током? 2. Что называют силой тока?

3. Какое направление тока принимают за положительное? 4. Какие условия необходимы для существования электрического тока?

Ссылка на основную публикацию
Уровень для плитки цена
На сайте продавца доступен "Онлайн консультант".Для перехода на сайт нажмите "В магазин" На сайте продавца доступен "Онлайн консультант".Для перехода на...
Украшения на люстру своими руками
-Метки -Рубрики РУЧНАЯ РАБОТА , hand made (2303) МАСТЕР-КЛАСС,TUTORIAL (1465) ТЕХНИКИ ДЕКОРИРОВАНИЯ (380) ДЕКУПАЖ, Decupaje (379) ВИДЕО, Video, видеоуроки (305)...
Украшения своими руками бижутерия пошагово
для тех, кто ищет курсы: Войти в аккаунт Чтобы воспользоваться всеми функциями сайта, вам необходимо зарегистрироваться/войти в свой аккаунт на...
Уровень масла на газели
На экономичность и безопасность автомобиля, а также его технические данные влияет своевременное проведение ТО и обслуживания. Стоит отметить, что за...
Adblock detector